The number of edges in critical strongly connected graphs

نویسندگان

  • Ron Aharoni
  • Eli Berger
چکیده

We prove that the maximal number of directed edges in a vertex-critical strongly connected simple digraph on n vertices is (

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

Anti-forcing number of some specific graphs

Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

On strongly 2-multiplicative graphs

In this paper we obtain an upper bound and also a lower bound for maximum edges of strongly 2 multiplicative graphs of order n. Also we prove that triangular ladder the graph obtained by duplication of an arbitrary edge by a new vertex in path and the graphobtained by duplicating all vertices by new edges in a path and some other graphs are strongly 2 multiplicative

متن کامل

On the edge-connectivity of C_4-free graphs

Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2001